WELCOME

Evolving Interchange Guidelines and Tests

52nd Lubricants and Base Oil Symposium - 2019 Zagreb, 16 October 2019

www.atiel.org

atiel

Speaker introduction

Adri van de Ven

- Kuwait Petroleum Research & Technology B.V., The Netherlands
- Director
- Member of the ATIEL Executive Committee
- 35-year career in the petroleum industry

Today's session - what we will cover

Insights into API and European approaches to interchange guidelines and tests

What are the options for running European interchange projects?

03

01

Hear a case study as well as views on industry hurdles and future initiatives

Evolution of European (ACEA) Specification

Engine Oil Specifications driven by Emission Legislation

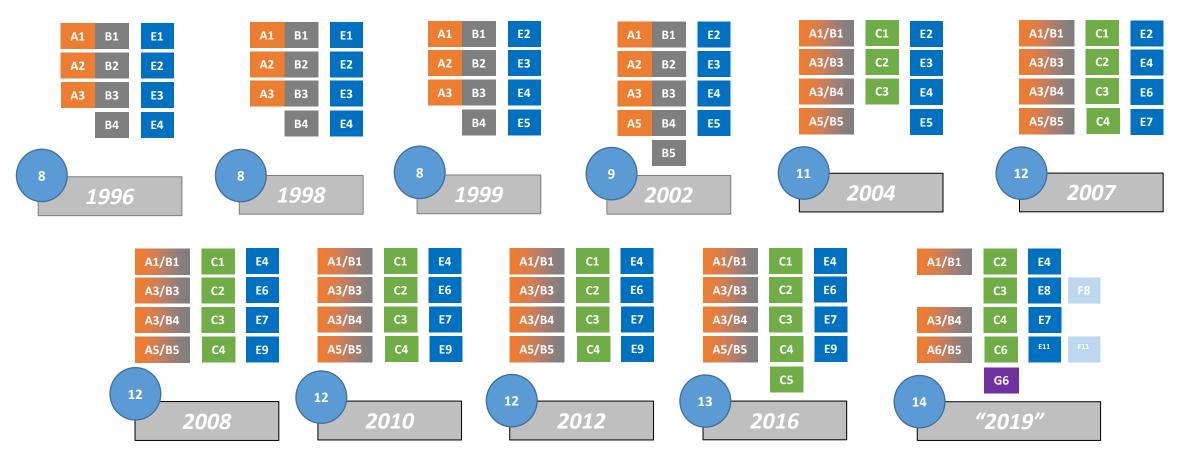
Initially focus on SO_2 , NO_x and PM emission reduction

Now more focus on CO₂ Emission Reduction

Evolution main Viscosity Grades

Implications for base oil requirements

Increased use of Group II and III base oils in Light and Heavy Duty


- Very limited BOI interchange guidelines for Grp II and III
- Current guidelines focused around group 1 base stocks

Interchange Guidelines did not hold pace with specification evolution

The Complexity Challenge

From 8 to 14 Categories

Interchange Guidelines help to manage increasing complexity

New Engine Tests Add Complexity

Proposed new engine tests in "ACEA 2019 Sequences"

Heavy Duty

- CEC OM471LS CEC
- Mack T-13

Light Duty

- M271 EVO Sludge CEC
- Toyota Turbocharger CEC
- Seq IVB Wear 🎡
- Seq. VH Sludge 🌒
- Seq. IX LSPI 🏶
- Seq. X Chain Wear 🎡
- For new CEC Tests no VGRA/BOI interchange guidelines available
- For I tests the North American (API) Interchange guidelines are applied

The Industry Response

1 Davie	stillstorie properties COver Alegories COver Manuel	exity of making	eller all
	ned		

Complexity Increase

- Number of ACEA categories increased from 8 to 14
- New and more engine tests in ACEA Sequence for which there are no interchange guidelines
- Changing viscosity grades
- New and more base oils appearing on the market

Interchange Guidelines

- Viscosity Grade Read Across and base oil interchange can contribute to managing the increased complexity and reduce engine oil development costs, while continuing to assure final product performance.
- ATIEL and ATC joined forces to move the development of read across guidelines for (new) CEC tests forward.

NA vs European Approach

Differences between API and ACEA systems

Engine Oil Licensing & Certification System (EOLCS)

- One organisation (API) representing OEMs, Oil and Additives industries
- API develops and <u>owns</u> lubricant classifications
- Enabled development of licensing system
- Logo and policing system
- Fee-based licensing
- Licensing ('Donut') still voluntary

Voluntary code

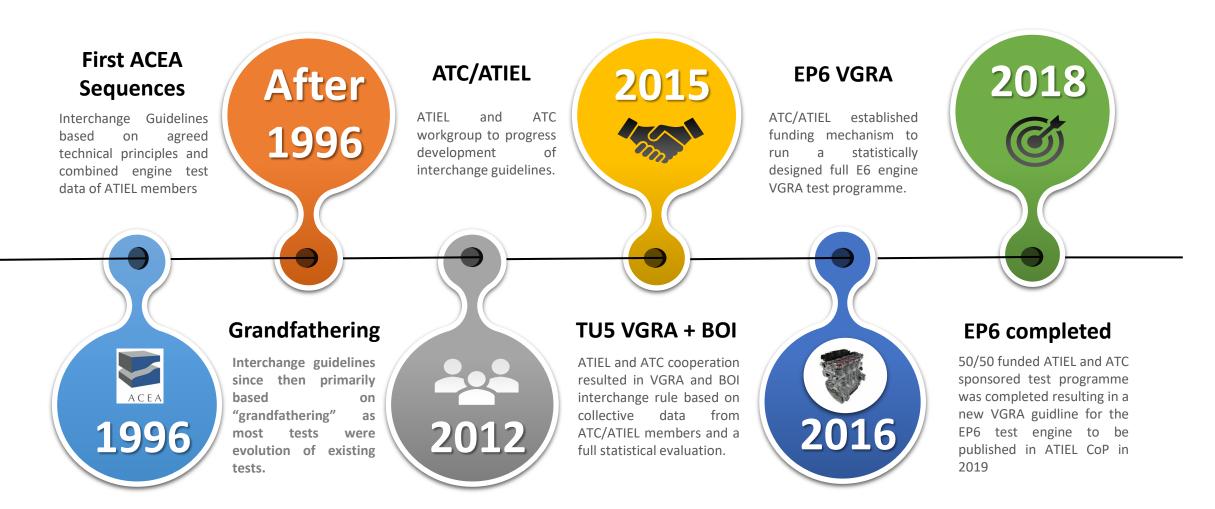
- Different organisations representing OEMs, Oil and Additives industries
- ACEA owns Oil Sequences, but chooses not to license
- Not legally possible for ATIEL to license/police against the Oil Sequences
- Voluntary code, with signatory system (Letter of Conformance) - required by ACEA to make performance claims

Differences between API and ACEA systems (Cont'd)

- Viscosity Grade Read Across and Base Oil Interchange Guidelines are developed as integral part of new test development.
- Read across guidelines available at start of new category.
- Funding:
 - Light Duty OEMs, ILSAC members
 - Heavy Duty OEMs, EMA members
 - Additive companies, ACC members
 - Oil marketers, API members.

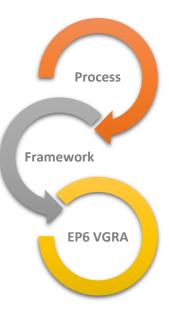
Read Across Guideline Development separated from test development

- Viscosity Grade read Across and Base Oil Interchange Guidelines are responsibility of ATIEL
- No read across guidelines available at start of new tests.
- Funding:
 - Oil Marketers, ATIEL members
 - Additive companies, ATC Members



The EP6 VGRA Programme

First European Industry Read Across Test Program



Interchange Guideline development in Europe

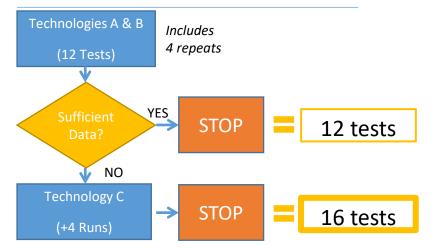
EP6 Engine Test Development - joint ATIEL/ATC Initiative

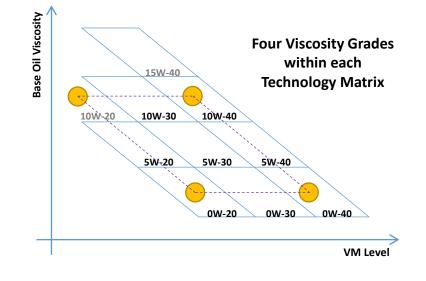
Prior to 2016, there was **no process in place** to develop read-across guidelines for new engine tests

ATIEL/ATC developed a **framework for read-across guideline development**, with plans to apply this framework to the new ACEA 2016 engine tests

Agreement was reached to proceed with **EP6 VGRA** as the first read-across guideline development programme

EP6 VGRA Working Group Objectives


- Develop & validate EP6 VGRA guidelines for the ATIEL Code of Practice.
 - Plan and run a statistically designed experiment in the EP6, exploring the effect of base oil viscosity and viscosity modifier treatrate on test performance.
 - Interpret results and recommend VGRA guidelines for incorporation into he ATIEL Code of Practice.

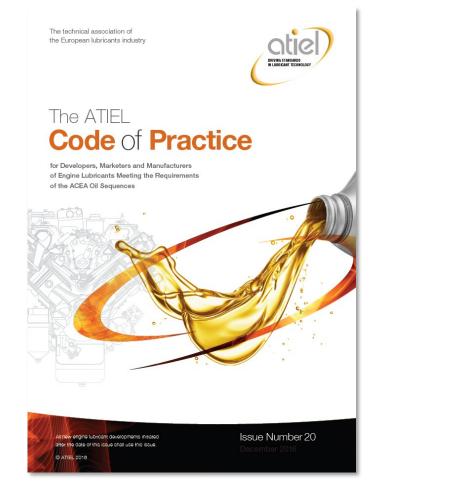

atiel

Test Matrix Design

- Viscosity Grade coverage from **0W-20** to **10W-40**
 - Maximises change in base oil viscosity and VM Level to achieve high statically power to identify effects above the noise of the test
- Three technologies, across three suppliers
 - Maximises opportunity to identify unexpected effects and interactions,.
- BOI is **not** being considered base stock slate will be consistent within each Technology

EP6 Test Order

Technology C will only be required if:


- -Analysis of the first two technologies gives neutral results
- Initial conclusions conflict with technical judgement and experience
- Results demonstrate strong interactions and read-across cannot be permitted

Program costs ~ € 1 million for 16 tests

Format of the Current EP6 VGRA Guideline

Issue 20, Appendix A, December 2016

Table VGRA.5 VGRA guidelines for the VW TDI or OM646LA Bio or EP6CDT engine test (Applicable only to engine lubricant with non-dispersant type of viscosity modifier)

Test		Can be read-across to													
run on	0W-20	0W-30	0W-40	5W-20	5W-30	5W-40	5W-50	10W-30	10W-40	10W-50	10W-60	15W-40	15W-50	20W-40	20W-50
0W-20		no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)	yes if (*)	yes if ^(*)	yes if (*)
0W-30	yes if ^(*)		no	yes if ^(*)	yes if ^(*)	yes if ^(*)	no	yes if ^(*)	yes if ^(*)	yes if ^(*)	no	yes if ^(*)	yes if (*)	yes if ^(*)	yes if (")
0W-40	yes if ^(*)	yes if ^(*)		yes if ^(*)	yes if (*)										
5W-20	no	no	no		no	no	no	yes if ^(*)	no	no	no	yes if ^(*)	no	yes if ^(*)	yes if ^(*)
5W-30	yes if ^(*)	no	no	yes if ^(*)		no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if (*)
5W-40	yes if ^(*)	yes if ^(*)	no	yes if ^(*)	yes if ^(*)		no	yes if ^(*)	yes if ^(*)	yes if ^(*)	no	yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if $^{(^{\ast})}$
5W-50	yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if ^{(*}	yes if ^(*)	yes if ^(*)		yes if ("	yes if ("	yes if ^(*)	yes if ^(*)	yes if ("	yes if ("	yes if ("	yes if (*
10W-30	no	no	no	yes if ^(*)	no	no	no		no	no	no	yes if ^(*)	no	yes if ^(*)	yes if (*)
10W-40	yes if ^(*)	no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)		no	no	yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if (*)
10W-50	yes if ^(*)	no	no	yes if ^(*)	yes if ^(*)	yes if ^(*)	no	yes if ^(*)	yes if ^(*)		no	yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if $^{(^{\ast})}$
10W-60	yes if ^(*)		yes if ^(*)	yes if ^(*)	yes if ^(*)	yes if (*)									
15W-40	no	no	no	yes if ^(*)	no	no	no	yes if ^(*)	no	no	no		no	yes if ^(*)	yes if (*)
15W-50	no	no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)	yes if ^(*)	no	no	yes if ^(*)		yes if ^(*)	yes if (*)
20W-40	no		no												
20W-50	no	no	no	yes if ^(*)	no	no	no	yes if ^(*)	no	no	no	yes if ^(*)	no	yes if ^(*)	

(*) Yes, VGRA is permitted if the viscosity modifier concentration increase in the read-across viscosity grade vs the tested viscosity grade is less than 15% mass fraction relative.

If the viscosity modifier concentration increase is larger than 15% mass fraction relative, VGRA can be permitted if **technical support data** as defined in Section h.15 of the ATC Code of Practice³ is available to justify read-across.

The new VGRA Guideline for the EP6CDT test provides more flexibility

VGRA is permitted if the viscosity modifier concentration is decreased, or if the increase in the read-across viscosity grade vs the tested viscosity grade is less than 15% mass fraction relative.

This VGRA guideline is the result of a statistically designed matrix of EP6 test oils run by ATIEL and ATC in a diverse range of technologies.

If the viscosity modifier concentration increase is larger than 15% mass fraction relative, VGRA can be permitted if technical support data as defined in Section h.15 of the ATC Code of Practice is available to justify read-across.

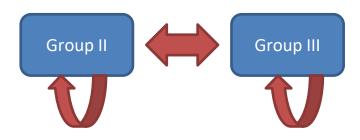
Future Programs

Viscosity Grade Read Across

Next VGRA Program Selection Criteria

Industry currently in the process of selecting the next VGRA program:

• Consensus now forming to develop interchange guidelines for the Toyota Turbocharger test as no interchange guidelines for this new test are available


Future Programs

Base Oil Interchange Options

Base Oil Interchange Matrix Design

- Design example for e.g. the EP 6 Engine test (cost per test ~ € 67,300)
- Assumption that two base oil groups, including intra-group read-across is a <u>minimum</u> requirement for BOI to be worthwhile.

- Group II to Group II
- Group III to Group III
- Group II to Group III
- Group III to Group II

Possible Base Oil Interchange Matrix

1	Technology A	10W-30		•	Technology A	10W-30	10	
2	Technology B	5W-40	Group II Slate 1	Group III Slate 1	Technology B	5W-40	11	
3	Technology C	5W-30			Technology C	5W-30	12	
4	Technology A	10W-30			Technology A	10W-30	13	
5	Technology B	5W-40	Group II Slate 2	Group III Slate 2	Technology B	5W-40	14	
6	Technology C	5W-30			Technology C	5W-30	15	
7	Technology A	10W-30	Crease II		Technology A	10W-30	16	
8	Technology B	5W-40	Group II Slate 3	Group III Slate 3	Technology B	5W-40	17	
9	Technology C	5W-30			Technology C	5W-30	18	
3 BO slates 2 base oil groups 3 VG's 18 tests 4 duplicates 22 tests								

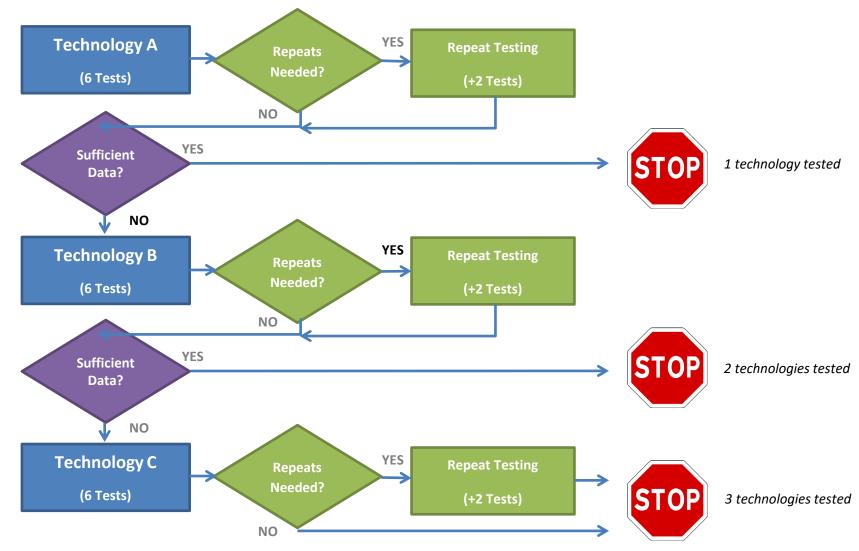
atiel

Base Oil Interchnange Matrix

- Assumption that two base oil groups, including intra-group read-across is a minimum requirement for BOI to be worthwhile.
- Testing may become prohibitively expensive very quickly when additional base oil groups are added (see example with EP6 below).

EP6 Test Cost Estimate	
~67 300 EUR	This is an estimated value. Cost structures can vary.

Condition	Number of Tests	Total Cost Estimate		
Two base oil groups (including intra-group interchange)	22	<u>1 480 600 EUR</u>		
Three base groups (including intra-group interchange)	+ 9 = 31	+ 605 700 EUR <mark>2 086 300 EUR</mark>		


Base Oil Interchange Matrix Simplification

- BOI Experimental Matrix is much more expensive than the VGRA Matrix
 - Approximately at least twice as expensive
- How can we reduce the costs ?
 - Take a more practical approach
 - Is it necessary to include Group II <-> Group III interchange ?
 - Is interchange in same group not sufficient ?
 - Step by step including stopping rules

BOI Matrix/Stopping rules - Stepwise Approach

Base Oil Interchange Matrix/Stopping rules

Application to EP6

	No Repeats	All Repeats
Technology A	403 800 EUR	538 400 EUR
Technology A+B	807 600 EUR	1 076 800 EUR
Technology A+B+C	1 211 400 EUR	1 615 200 EUR

- Opportunity to stop testing after Technology A if:
 - Confidence is sufficiently high in read-across
 - No read-across is possible

Industry Challenges

Main Industry Challenges

Alignment

Industry alignment within and across organisations (ATC and ATIEL)

Cost

- Especially Base Oil Interchange Programs require significant level of funding
- Currently only PCMO
- HDDO will be even more expensive

Funding

Funding mechanism

• How to distribute costs amongst beneficiaries ?

Test Engines

Availability of test engines

otiel

Main Industry Challenges

- It is ATIEL's position that ultimately the best option is to include VGRA and/or BOI in the CEC test development phase (similar to API approach)
 - Most cost effective overall solution
 - Possibly delays engine test development
- This will require further industry alignment and funding

ATIEL is committed to progress the development of interchange guidelines for the benefit of its members and the industry

Thank you!

For more information visit: www.atiel.org www.eelqms.eu

Contact us at: info@atiel.eu

Presentation templates: "© Copyright PresentationGO.com By PresentationGO.com